ВСЕРОССИЙСКАЯ ПРОВЕРОЧНАЯ РАБОТА

ХИМИЯ 11 КЛАСС

Вариант 2

Инструкция по выполнению работы

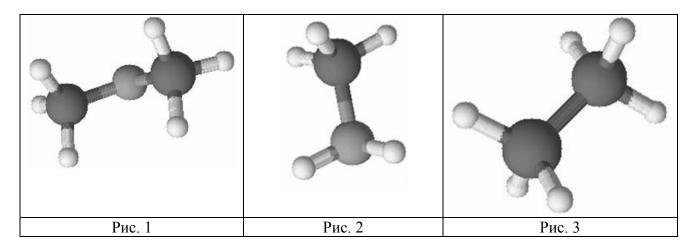
Проверочная работа включает в себя 15 заданий. На выполнение работы по химии отводится 1 час 30 минут (90 минут).

Оформляйте ответы в тексте работы согласно инструкциям к заданиям. В случае записи неверного ответа зачеркните его и запишите рядом новый.

При выполнении работы разрешается использовать следующие дополнительные материалы:

- Периодическая система химических элементов Д.И. Менделеева;
- таблица растворимости солей, кислот и оснований в воде;
- электрохимический ряд напряжений металлов;
- непрограммируемый калькулятор.

При выполнении заданий Вы можете использовать черновик. Записи в черновике проверяться и оцениваться не будут.

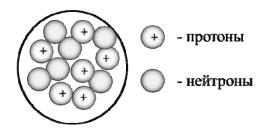

Советуем выполнять задания в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения всей работы у Вас останется время, Вы сможете вернуться к пропущенным заданиям.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

(1)

Одним из научных методов познания веществ и химических явлений является моделирование. Так, модели молекул отражают характерные признаки реальных объектов. На рис. 1–3 изображены модели молекул трёх веществ.


Проанализируйте данные модели молекул веществ и определите вещество:

- 1) состав которого выражается формулой C_2H_6 ;
- 2) в котором один из атомов проявляет валентность, равную II. Запишите в таблицу номера рисунков и укажите количество атомов в молекулах выбранных веществ.

Вещество	Номер рисунка	Количество атомов в молекуле
состав которого выражается формулой C_2H_6		
в котором один из атомов проявляет валентность, равную II		

(2)

На рисунке изображена модель строения ядра атома некоторого химического элемента.

Ознакомьтесь с предложенной моделью и выполните следующие задания:

- 1) запишите символ химического элемента, которому соответствует данная модель атома;
- 2) запишите заряд ядра этого элемента и номер периода в Периодической системе химических элементов Д.И. Менделеева, в котором расположен этот элемент;
- 3) определите, к металлам или неметаллам относится простое вещество, которое образует этот элемент.

Ответы запишите в таблицу.

 Символ химического элемента	Заряд ядра	№ периода	Простое вещество

3

Периодическая система химических элементов Д.И. Менделеева — богатое хранилище информации о химических элементах, их свойствах и свойствах их соединений, о закономерностях изменения этих свойств, о способах получения веществ, а также о нахождении их в природе. Так, например, известно, что с увеличением порядкового номера химического элемента в периодах радиусы атомов уменьшаются, а в группах — увеличиваются.

Учитывая эти закономерности, расположите в порядке увеличения радиуса атомов следующие элементы: Li, Na, B, Al. Запишите знаки элементов в нужной последовательности.

OTBET:	Ответ:	:			
--------	--------	---	--	--	--

КОД

(4)

В приведённой ниже таблице представлены примеры формул веществ с ковалентной полярной и ковалентной неполярной химической связью.

Примеры формул веществ						
С ковалентной полярной химической	С ковалентной неполярной химической					
связью	связью					
• PCl ₃ ;	• P ₄ ;					
• NO;	P₄;N₂;					
• CH ₄	• S ₈					

Используя данную информацию, определите вид химической связи:

- 1) в фуллерене (C_{60});
- 2) в молекуле хлороводорода (HCl).

Запишите ответ в отведённом месте:

запишите ответ в отведенном месте.
1) В фуллерене
 2) В хлороводороде

Прочитайте следующий текст и выполните задания 5-7.

Оксид углерода(II) или угарный газ (CO) — это бесцветный нерастворимый в воде газ. Он является несолеобразующим оксидом и поэтому не взаимодействует ни с водой, ни с кислотами, ни со щелочами. Реакционная способность оксида углерода(II) связана с его восстановительной активностью. Он горит на воздухе синеватым пламенем. Его используют в промышленности в качестве восстановителя для получения металлов из их оксидов, например железа из оксида железа(III) (Fe_2O_3). Угарный газ очень ядовит. Он не имеет запаха и поэтому особенно опасен, поскольку отравление может произойти незаметно. Оксид углерода(II) легче, чем кислород, соединяется с гемоглобином крови и блокирует её способность переносить кислород.

Известен ещё один оксид углерода — углекислый газ или оксид углерода(IV) (CO₂). Этот газ используют в пищевой промышленности в значительных количествах для приготовления шипучих напитков, соды и мочевины. В промышленности углекислый газ образуется в различных процессах брожения, при обжиге известняка (CaCO₃). В лаборатории его можно получить, действуя на карбонаты различных металлов соляной или серной кислотами (H₂SO₄). Также в больших количествах углекислый газ образуется при горении угля и углеродсодержащих веществ. Гидроксид натрия (NaOH) поглощает углекислый газ и превращается в карбонат натрия (Na₂CO₃). Эта соль широко применяется в различных областях промышленности. Так, например, в пищевой промышленности карбонат натрия зарегистрирован в качестве пищевой добавки E500, используется в качестве регулятора кислотности, разрыхлителя, препятствующего комкованию и слёживанию продуктов питания.

5 Сложные неорганические вещества можно классифицировать по четырём группам, как показано на схеме. В эту схему для каждой из четырёх групп *впишите* по одной химической формуле веществ из числа тех, о которых говорится в приведённом выше тексте.

6	1. Составьте молекулярное уравнение реакции оксида углерода(II) с оксидом железа(III). Ответ:
	2. Какие свойства проявляет оксид углерода(II) в этой реакции? Ответ:

7	1. Составьте молекулярное уравнение упомянутой в тексте реакции между гидроксидом натрия и углекислым газом.
	Ответ:
	2. Почему с раствором гидроксида натрия не взаимодействует оксид углерода(II) (CO)?
	Ответ:
8	В исследованной воде из местного колодца были обнаружены следующие ионы: Ca^{2+} , $C\Gamma$, Fe^{2+} . Для проведения качественного анализа к этой воде добавили раствор K_2S .
	1. Укажите, какое изменение можно наблюдать в растворе при проведении данного опыта, учитывая что концентрация веществ является достаточной для проведения анализа.
	Ответ:
	2. Запишите сокращённое ионное уравнение произошедшей химической реакции.
	Ответ:
9	Дана схема окислительно-восстановительной реакции. $H_3PO_2 + Cl_2 + H_2O \longrightarrow H_3PO_4 + HCl$
	1. Составьте электронный баланс этой реакции.
	Ответ:
	2. Укажите окислитель и восстановитель. Ответ:
	3. Расставьте коэффициенты в уравнении реакции. Ответ:
10	Дана схема превращений: $P_2O_5 \longrightarrow H_3PO_4 \xrightarrow{NaOH} X \longrightarrow Ca_3(PO_4)_2$
	Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения.
	1)
	2)
	3)

Для выполнения заданий 11-13 используйте вещества, структурные формулы которых приведены ниже:

1)
$$CH_3$$
 C $-CH_2$ $-CH_3$

3)
$$CH \equiv C - CH_2 - CH_3$$

O CH₃-C-CH₂-CH₃ 2) CH₃-CH₂-CH₂-CH₂ 3) CH
$$\equiv$$
C-CH₂-CH₃
OH

4) CH₃-CH₂-CH=CH₂ 5) CH₃-CH₂

(11)	Из	в приве,	дённого	перечня	выберите органически	вещества,	которь	ие соот	ветствуют	г ук	азанным
	В	таблице	классам	/группам	органически	их соедине	ний. За	пишите	номера з	тих	веществ
	в соответствующие графы таблицы.										

Алкен	Альдегид

	В предложенные схемы химических реакций впишите структурные формулы пропущенных
(12)	веществ, выбрав их из приведённого выше перечня, и расставьте коэффициенты.

1)
$$+ H_2 \xrightarrow{Pt} CH_3 - CH - CH_2 - CH_3$$

Выберите из предложенного перечня вещество Х и запишите уравнения двух реакций, с помощью которых можно осуществить эти превращения. При написании уравнений реакций используйте структурные формулы органических веществ.

4 \				
1)				
1)				
 - <i>j</i>				

Запишите название вещества Х.

Одним из важных понятий в экологии и химии является «предельно допустимая
концентрация» (ПДК). ПДК — это такая концентрация вещества в окружающей среде,
которая при повседневном воздействии в течение длительного времени не оказывает
прямого или косвенного неблагоприятного влияния на настоящее или будущее поколение, не
снижает работоспособности человека, не ухудшает его самочувствия и условий жизни.
ПДК угарного газа в воздухе жилых помещений составляет 3 мг/м^3 . В помещении с печным отоплением площадью 15 м^2 и высотой потолка 2 м 80 см из-за
неполного сгорания угля в печи в воздух выделилось 147 мг угарного газа. Определите и
подтвердите расчётами, превышает ли концентрация угарного газа в воздухе данного
помещения значение ПДК. Предложите способ, позволяющий снизить концентрацию
угарного газа в помещении.
Ответ:
Борный спирт – раствор борной кислоты в этиловом спирте – используют как универсальное
дезинфицирующее средство. Рассчитайте массу 6%-ного раствора борной кислоты, которую
можно получить из 3 г борной кислоты, и массу спирта, взятого для приготовления этого
раствора. Запишите подробное решение задачи.
participal comments in approximation of the same saids in
Ответ:
OTBET.
Olbel